Efficient Computation of Updated Lower Expectations for Imprecise Continuous-Time Hidden Markov Chains
نویسندگان
چکیده
We consider the problem of performing inference with imprecise continuous-time hidden Markov chains, that is, imprecise continuous-time Markov chains that are augmented with random output variables whose distribution depends on the hidden state of the chain. The prefix ‘imprecise’ refers to the fact that we do not consider a classical continuous-time Markov chain, but replace it with a robust extension that allows us to represent various types of model uncertainty, using the theory of imprecise probabilities. The inference problem amounts to computing lower expectations of functions on the state-space of the chain, given observations of the output variables. We develop and investigate this problem with very few assumptions on the output variables; in particular, they can be chosen to be either discrete or continuous random variables. Our main result is a polynomial runtime algorithm to compute the lower expectation of functions on the state-space at any given time-point, given a collection of observations of the output variables.
منابع مشابه
Imprecise Continuous-Time Markov Chains: Efficient Computational Methods with Guaranteed Error Bounds
Imprecise continuous-time Markov chains are a robust type of continuous-time Markov chains that allow for partially specified time-dependent parameters. Computing inferences for them requires the solution of a non-linear differential equation. As there is no general analytical expression for this solution, efficient numerical approximation methods are essential to the applicability of this mode...
متن کاملEstiHMM: an efficient algorithm for state sequence prediction in imprecise hidden Markov models
We develop an efficient algorithm that calculates the maximal state sequences in an imprecise hidden Markov model by means of coherent lower previsions. Initial results show that this algorithm is able to robustify the inferences made by a classical precise model. Keywords— Imprecise hidden Markov model, coherent lower prevision, epistemic irrelevance, maximal state sequence, Viterbi algorithm.
متن کاملTaylor Expansion for the Entropy Rate of Hidden Markov Chains
We study the entropy rate of a hidden Markov process, defined by observing the output of a symmetric channel whose input is a first order Markov process. Although this definition is very simple, obtaining the exact amount of entropy rate in calculation is an open problem. We introduce some probability matrices based on Markov chain's and channel's parameters. Then, we try to obtain an estimate ...
متن کاملComparisons for Backward Stochastic Differential Equations on Markov Chains and related No-Arbitrage Conditions
Abstract: Most previous contributions on BSDEs, and the related theories of nonlinear expectation and dynamic risk measures, have been in the framework of continuous time diffusions or jump diffusions. Using solutions of BSDEs on spaces related to finite state, continuous time Markov Chains, we develop a theory of nonlinear expectations in the spirit of (15). We prove basic properties of these ...
متن کاملBayesian analysis of continuous time Markov chains with application to phylogenetic modelling
Bayesian analysis of continuous time, discrete state space time series is an important and challenging problem, where incomplete observation and large parameter sets call for user-defined priors based on known properties of the process. Generalized linear models have a largely unexplored potential to construct such prior distributions. We show that an important challenge with Bayesian generaliz...
متن کامل